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Abstract

Background
Malaria risk factors at household level are known to be complex, uncertain, stochastic, nonlinear, and
multidimensional. The interplay among these factors, makes targeted interventions, and resource
allocation for malaria control challenging. However, few studies have demonstrated malaria’s
transmission complexity, control, and integrated modeling, with no available evidence on Uganda’s
refugee settlements. Using the 2018–2019 Uganda’s Malaria Indicator Survey (UMIS) data, an alternative
Bayesian belief network (BBN) modelling approach was used to analyse, predict, rank and illustrate the
conceptual reasoning, and complex causal relationships among the risk factors for malaria infections
among children under-�ve in refugee settlements of Uganda.

Methods
In the UMIS, household level information was obtained using standardized questionnaires, and a total of
675 children under 5 years were tested for malaria. From the dataset, we created a case�le containing
malaria test results, demographic, social-economic and environmental information. The case�le was
divided into a training (80%, n = 540) and testing (20%, n = 135) datasets. The training dataset was used
to develop the BBN model following well established guidelines. The testing dataset was used to evaluate
model performance.

Results
Model accuracy was 91.11% with an area under the receiver-operating characteristic curve of 0.95. The
model's spherical payoff was 0.91, with the logarithmic, and quadratic losses of 0.36, and 0.16
respectively, indicating a strong predictive, and classi�cation ability of the model. The probability of
refugee children testing positive, and negative for malaria was 48.1% and 51.9% respectively. The top
ranked malaria risk factors based on the sensitivity analysis included: (1) age of child; (2)roof materials
(i.e., thatch roofs); (3)wall materials (i.e., poles with mud and thatch walls); (4)whether children sleep
under insecticide-treated nets; 5)type of toilet facility used (i.e., no toilet facility, &pit latrines with slabs);
(6)walk time distance to water sources, (between 0–10minutes); (7)drinking water sources (i.e., open
water sources, and piped water on premises).

Conclusion
Ranking, rather than the statistical signi�cance of the malaria risk factors, is crucial as an approach to
applied research, as it helps stakeholders determine how to allocate resources for targeted malaria
interventions within the constraints of limited funding in the refugee settlements.
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Background
Malaria, a mosquito-borne disease continues to be a major public health concern in Africa with
longstanding infections leading to signi�cant morbidity, and mortality especially among children under
�ve years [1]. By 2021, approximately 234 million malaria cases, and 593,000 deaths occurred in Africa
[2], imposing a heavy burden on human societies, negatively impacting community welfare, and
constraining socio-economic development [3]. Some malaria related deaths in Africa have also been
attributed to the COVID-19 disruptions, which signi�cantly affected health care delivery systems, while
constraining malaria control funding including the distribution of insecticide-treated bed nets (ITNs),
indoor-residual spraying (IRS), and treatment [4, 5].

In sub-Saharan Africa (SSA), malaria transmission is mediated by complex interactions between humans,
and infected mosquitoes, exacerbated by the favourable physical environments for mosquito survival,
and breeding, opportunities for human exposure to mosquito bites, poor healthcare systems, inadequate
malaria control interventions [1, 6, 7] as well as land use and land cover changes [8]. Malaria infections
can even be more devastating among the structurally disadvantaged populations (i.e. refugees, internally
displaced, and asylum-seekers) who live in con�ned settlements characterized by poor sanitation, poor
housing infrastructure, limited access to health care services, inadequate malaria vector control, and
economic deprivation [9, 10]. Considering the complexity of malaria transmission dynamics, modeling the
determinants of malaria presents numerous challenges in regards to inclusion of uncertainties, non-
linearity, and dynamism [11]. It is thus paramount to apply integrated robust models that consider
malaria transmission dynamics, to guide pre-emptive policies, and targeted actions for malaria control,
and optimal use of resources in the refugee settlements of Uganda, and other refugee hosting countries
in Africa.

In most malaria studies conducted in SSA, logistic regression models have been widely used by different
scholars to analyse malaria risk factors. For instance, a recent systematic review by Edomwonyi
Obasohan and colleagues focusing on the period between January 1990 and December 2020 [6],
revealed that logistic regression models have been extensively utilised to identify statistically signi�cant
malaria risk factors including the nature of housing materials, household wealth status, possession of
ITNs, mother’s level of education, environmental resources, drinking water sources and sanitary
conditions. In refugee geographical settings, researchers have also used logistic regressions to examine
malaria risk factors. For-example, a study conducted in Tongogara refugee camp in Zimbabwe used a
logistic regression model, and revealed that housing structures, outdoor activities, and wearing clothes
that do not cover the whole body, increased the risk of contracting malaria [12]. Another study conducted
in Kiryandongo refugee camp in Uganda also utilized a logistic regression model, and concluded that
Plasmodium falciparum and intestinal parasitic co-infection was associated with malaria and anaemia
[13]. A recent study focusing on all the refugee settlements in Uganda also used a logistic regression
model, and revealed that the use of pit latrines, open water sources, lack of ITNs, inadequate knowledge
on malaria causes, and prevention, were the key drivers of malaria infections among children under-�ve
[14].
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Although these, and recent studies provide valuable insights on malaria risk factors in refugee
settlements, they have potential limitations. First, the logistic regression models employed in these
studies were used to measure the statistical signi�cance of each determinant of malaria infections with
respect to probabilities (P-value < 0.01; < 0.05), without any form of importance ranking to inform malaria
control efforts in refugee settlements. Second, logistic regression models have been observed to struggle
with restrictive expressiveness, and predictive performance, and sometimes multiplicative interpretation
of their generated results is di�cult [15]. Third, multiple factors in�uencing the risk for malaria infections
do not act in isolation, but rather in an aggregated format [11]. Fourth, logistic regression models were
unable to represent conceptual reasoning [16], or complex interactions [15] among the malaria risk
factors that were uncertain, stochastic, nonlinear, and multidimensional. Finally, in these studies, the
inclusion criteria (P < 0.20) that was used to include variables in multivariable logistic regression, left out
some key malaria risk determinants.

In response to the limitations of existing research, this study provides an alternative knowledge-based
Bayesian belief network (BBN) modelling approach to holistically analyse, predict, and rank the
determinants of malaria infections among children under-�ve years in the refugee settlements of Uganda.
Among others, the BBN is a key integrated modelling approach [17]. Increasingly, BBNs are becoming
popular, because of their probabilistic abilities to model uncertainties, and complex environmental
domains [18]. A BBN model has several advantages over logistic regression models. BBNs are: (1) highly
transparent; (2) �exible in modelling causal relationships; (3) capable of integrating information from
various sources (i.e. experimental data, historical data, and expert opinion), and (4) have the potential to
explicitly handle uncertainties, and missing data [18, 19]. Because of their versatility, BBNs have been
widely used in prediction, data analysis, updating, diagnosis, optimization, deviation detection, and
decision making based on available information [20]. Despite their increasing application in related
malaria studies [21–24], BBNs have not been used to study malaria risk factors in refugee settlements of
Uganda, and elsewhere.

Thus, we developed a BBN model utilizing data from the 2018–2019 Uganda Malaria Indicator Survey
(UMIS), which is the �rst national wide malaria survey in Uganda to include households, and people in the
refugee settlements [25]. Speci�cally, this study aimed to: (1) develop a novel, and effective knowledge-
based BBN model illustrating the conceptual reasoning, and complex causal relationships among the risk
factors for malaria infections among children under-�ve in refugee settlements of Uganda; (2) predict,
and rank the risk factors for malaria infections among children under-�ve in refugee settlements of
Uganda. Our contribution to the growing body of literature on malaria is two-fold. First, this study
contributes to the methodological literature on the comprehensive, and holistic assessment of malaria
risk factors using BBN technique in refugee settlements. Second, unlike in the previous studies which
focused on eliciting statistical signi�cance of the malaria risk factors, our study ranks the risk factors to
inform malaria control interventions efforts in refugee settlements. Ranking, and prioritizing malaria risk
factors are crucial for allocating resources to targeted malaria control interventions when operating
within a context of limited resources.
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Methods

Study area and justi�cation
This study focused on refugee settlements located in Uganda (Fig. 1). These settlements are distributed
in the districts of Yumbe, Arua, Adjumani, Moyo, Lamwo, Kiryadongo, Kyegegwa, Kamwenge, and Isingiro.
Uganda provided an interesting case to comprehensively, and holistically analyse, and rank the risk
factors for malaria infections in refugee settlements for several reasons. First, Uganda is the top refugee
hosting country in Africa, with over 1.8 refugees coming from mainly Somalia, South Sudan, Democratic
Republic of Congo (DRC), and Burundi [26]. Second, Uganda is a malaria endemic country, and by 2021,
5% of 247 million global malaria cases were reported in the country [2]. Third, all refugees in Uganda
come from malaria endemic countries, and there is a possibility of Uganda receiving imported malaria
strains that might adding an extra burden to the malaria reduction, and elimination efforts [27]. Fourth,
Uganda is the only refugee hosting country in Africa collecting malaria related data (i.e., parasite
prevalence, anemia, and status of key malaria indicators) via the malaria indicator surveys [25].

The Bayesian belief network (BBN)
A BBN is a directed acyclic graph (DAG) consisting of a set of variables linked with de�ned probabilities.
A BBN model is widely used for knowledge representation, and reasoning under uncertainty [18, 28]. The
DAG represents a qualitative graphical structure, where nodes (i.e., “parent” and “child” nodes) represent
the variables of interests that are linked with arrows indicating the existence of probabilistic conditional
dependence between two variables. Each node is de�ned by mutually exclusive states (i.e., categorical,
boolean, continuous or discrete), representing alternative choices or conditions for the speci�c node. The
quantitative element of a BBN consists of conditional probability tables (CPTs) corresponding to the
nodes having incoming links. The relationships between nodes are described by conditional probability
distributions (i.e., priori or unconditional, conditional, and posterior probabilities) that capture the
dependences between variables. For-instance, if there is a link going from node A to node C, then A is said
to be a “parent node” of C, and C is said to be a “child node” of A. This conditional relationship between
the “parent” node A, and “child” node C is de�ned by a conditional probability table. A BBN model is
based on the Bayes’ theorem of probability theory to propagate information between nodes [29]. Bayes’
theorem illustrates how prior knowledge about a given hypothesis X is updated by an observed evidence
Y as shown in Eq. 1.

 (Eq. 1)

Where P(X), is the prior probability of the hypothesis X (i.e., the likelihood that X will be in a particular
state, prior to consideration of any evidence), P(Y|X) is the conditional probability (i.e., the likelihood of
the evidence, given the hypothesis to be tested); and P(X|Y) is the posterior probability of the hypothesis
(i.e., the likelihood that X is in a particular state, conditional on the evidence provided). This equation
showing probabilities gives an explicit representation of uncertainties [28].

P (X|Y ) =
P (X)∗P (Y |X)

P (Y )
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Application of the BBN modelling approach to the malaria
risk factors
In this study, we followed well established guidelines, and protocols to develop the BBN model [30, 31].
Before constructing a BBN model, it is recommended to either use subject-matter experts or review
literature or both to identify key correlates or explanatory variables that in�uence an outcome of interest
[30]. In this study, our outcome of interest was the probability that children under �ve years of age in
refugee settlements of Uganda (Fig. 1) tested positive for malaria. To identify the correlates of malaria
infections, we conducted a literature review, and the variables deemed relevant for the refugee
settlements were identi�ed as shown in Additional �le 1: Table S1. Based on literature review, expert
knowledge, and our previous BBN modelling experience [21, 22, 32], we organized all the risk factors for
malaria infections into an in�uence diagram as shown in Fig. 2.

Data source, and case�le development for model building
This study utilized a nationally representative data from the 2018–2019 UMIS, and this data was
downloaded from the Demographic and Health Surveys program website [33]. Standardised
questionnaires were utilized to collect the demographic, social, economic, and environmental information
from the surveyed refugee households. Both rapid diagnostic test (RDT), and the blood smear test (BST)
were used to test malaria parasitaemia among children under 5 years with consent obtained from the
household heads [25]. The 2018–2019 UMIS involved 3481 children from refugee settlements shown in
Fig. 1.

This study focused on 675 children under 5 years who were tested for malaria using the RDT. We used
Microsoft Excel to compile a case�le (n = 675) containing the malaria RDT results, and all the variables
captured in the in�uence diagram (Fig. 2).

Model design, development and parameterisation
By using the in�uence diagram (Fig. 2), we constructed a BBN model (Fig. 3) using Netica software
version 6.09 (Norsys Software Corp. Vancouver, Canada). The BBN model structure was determined
based on our BBN modelling experience, information from literature (Additional �le 1: Table S1), and
model reviewers. This combination was adopted to comprehensively, and holistically capture all the
malaria risk factors, and to reduce on the model complexity. The model was parameterised based on the
variable categories in the questionnaires that were used in the 2018–2019 UMIS.

Model calibration
Using the K-fold partitioning approach (K = 2), our generated case�le (n = 675) was randomly partitioned
into a training portion (80%, n = 540) used to populate the model, and a test dataset (20%, n = 135), which
was used to evaluate model performance. A 80/20 data split is among the standard partition ranges
recommended for model calibration, and testing [34]. Both the training, and testing datasets were
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generated using JMP 13 software (JMP Statistical Discovery LLC, North Carolina, USA). The vertical
lookup (V-lookup) function in Microsoft Excel was used to extract the randomly partitioned portions (i.e.,
training, and testing datasets) from the main case�le (n = 675). The developed BBN model was calibrated
using the training dataset (80%, n = 540). Learning of the CPTs was based on expectation maximization
learning algorithm, a robust technique that automatically updates initial parameter estimates by �tting
the data �le to the �nal model [19].

Model validation
The developed BBN model (Fig. 3) was evaluated using the sensitivity, and prediction performance
metrics. Sensitivity analysis can help verify correct initial model structure, and parameterization [29]. It
considers that, inputs to the model are uncertain, complex, and provides critical information on how
sensitive the performance of the model is to slight or minor changes in the input data [35]. In this study,
the function of ‘sensitivity to �ndings’ in Netica software was invoked to calculate the entropy, and
mutual information measures of the BBN model. The entropy measure is based on the assumption that
uncertainty or randomness of a variable X, characterized by probability distribution P(X), can be
represented by the entropy function as shown in Eq. 2

 (Eq. 2)

Reducing H(X) by collecting information in addition to the current knowledge about variable X, can be
interpreted as reducing the uncertainty about the true state of X. The entropy measure therefore enables
an assessment of the additional information required to specify a particular alternative. The mutual
information measure was used to assess the impact of obtaining information from variable (Y) in
reducing the total uncertainty about variable X using Eq. 3.

 (Eq. 3)

where I(Y, X), is the mutual information between variables. This measure calculates the expected degree
to which the joint probability of X, and Y diverges from what it would be if X was independent of Y.

In testing the prediction performance of the BBN model, a ‘test with cases’ function of Netica software
was conducted using the generated test dataset (n = 135). In this study, four test metrics were used to
evaluate model performance. First, a confusion matrix was used to test the model's ability to correctly
predict both positive, and negative malaria cases among refugee children. Second, to test the
classi�cation power of the BBN model, a receiver operator characteristic curve (ROC) was developed in
Excel (Fig. 4) based on the sensitivity, and speci�city results generated by the model. The ROC was used
to assess the model’s prediction accuracy across a continuum of prediction threshold (i.e., 0–100).
Besides, the area under the ROC curve (AUC) was also used to measure the overall model performance
across a full range of possible cutoffs with value ranges of between 0.5–0.7, 0.7–0.9, and above 0.9
indicating ‘poor’, ‘good’ and ‘excellent’ discrimination abilities respectively. To evaluate the classi�cation
success rate of the developed BBN model, the error rate, and scoring rules of logarithmic loss, quadratic
loss and spherical payoff were used. For logarithmic loss range (0–in�nity), and quadratic loss range (0–

H (X) = −∑n
i=1 P (Xi) logP (X)

I (Y , X) = H (Y ) − H (Y | X)
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2), scores close to zero are considered to be better, whilst 1 indicates the best model performance for
spherical payoff (0–1) [29, 35].

Results

The Bayesian belief network model
In this study, we developed a BBN model (Fig. 3) to illustrate the conceptual reasoning, and the complex
interactions among the risk factors for malaria infections among children under �ve years in refugee
settlements in Uganda. The model was compiled using the training dataset (n = 80%) as indicated in the
methods section. The BBN model has a total of 23 nodes containing variables (i.e. malaria risk factors)
with discrete black state-belief bars indicating the maximum likelihood state. The independent nodes
contain prior, and conditional probabilities, and linked together with conditional probability tables. The
arrows show the various interactions, direction, and in�uence of one node to other nodes. The output
node (i.e. results of malaria rapid test) show a collective joint effect of all the malaria risk factors
expressed as posterior conditional probabilities. Our model output results indicate that the probability of
refugee children testing positive and negative for malaria was 48.1%, and 51.9% respectively.

Model performance
To test the performance of the BBN model (Fig. 3), a total of 135 cases that were randomly selected from
the original case�le (n = 675) was used, and the results are shown in Table 1.

Table 1
A confusion matrix showing the predication accuracy of the BBN model

  Actual: Positive Scores Actual: Negative Scores Total

Predicted: Positive True Positive (TP) 38 False Positive (FP) 2 40

Predicted:
Negative

False Negative (FN) 4 True Negative (TN) 91 95

Total (Test
dataset)

  42   93 135

Model
Performance

Sensitivity (TP/TP + 
FN)

0.90 1-Speci�city (TN/TN + 
FP)

0.98  

  Model Error rate 8.89%      

  Logarithmic loss 0.3609      

  Quadratic loss 0.1619      

  Spherical payoff 0.9094      
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In Table 1, the confusion matrix shows the number of known malaria cases that were correctly classi�ed
(i.e., True positive malaria cases = 38, and True negative malaria cases = 91). The BBN model has an error
rate of 8.89%, implying that, it has an excellent overall accuracy of 91.11% to predict positive and
negative malaria cases correctly. The BBN model’s classi�cation power, was evaluated basing on the
scoring rules. The model’s scoring rule results indicated that the model has a strongest predictive power
with both the logarithmic loss (0.3609) and quadratic loss (0.1619) scores close to zero, while a spherical
payoff (0.9094) approaching 1. The sensitivity results indicated that the BBN model was able to classify
90% of true positive malaria cases correctly. The speci�city results further indicate that the model was
able to classify true negative cases correctly. To further test the classi�cation ability of the developed
model, a receiver-operating characteristic (ROC) curve plotting percentages of true positives against false
positives was constructed to assess model accuracy across a range of possible predication cutoffs
(Fig. 4).

In Fig. 4, each point on the ROC curve depicts a trade-off between a true positive against a false positive
as the cutoff ranges increases from 0.0 to 1.0. The area under the ROC curve which computes the overall
performance of the model is 0.9464, implying that a randomly selected child from a malaria positive
diagnosis group, had a predicted value larger than that from a child from a malaria negative diagnosis
group. The area under the ROC result indicates that the model has an excellent classi�cation ability to
distinguish between two diagnostic malaria groups (i.e., positive or negative), much better than a model
that randomly classi�es malaria cases. With these model performance tests, the developed model is
considered to be successful, and appropriate to provide the best interpretation of results, and ranking of
the risk factors for malaria infections among children under �ve years in the refugee settlements in
Uganda.

Ranking of the risk factors for malaria infections in refugee
settlements in Uganda
In this study, 22 risk factors for malaria infections (Fig. 3) were considered in the analysis. We performed
a sensitivity analysis test on the output node (i.e., results of malaria rapid test) of developed, and tested
BBN model (Fig. 3) to rank the relative importance of each risk factor of malaria infection as shown in
Fig. 5. Details of the sensitivity analysis results can be found in Additional �le 1: Table S2.

In Fig. 5, the �rst 10 ranked determinants caused the largest entropy reduction in malaria infections in
refugee settlements. Although lack ITNs and IRS, age of household head, sex of household head,
mother’s level of education, lack of knowledge on the causes, and prevention of malaria have been
recently associated with malaria infections in refugee settlements in Uganda [14], in this study, they are
not among the 10 ranked determinants because they indirectly in�uence malaria infections through other
factors.

Prediction of the risk factors of malaria infection in the refugee settlements in Uganda.
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In this study, we selected the top 10 ranked risk factors (Fig. 5) that contributed to the largest entropy
reduction in malaria infections to predict, and estimate their contribution using scenario analysis. In the
scenario analysis, we focused on the output node of the BBN models (Fig. 3.), where the ‘positive’ state
belief was tagged to the probability of 100% (i.e. positive malaria diagnosed) to predict the relative
changes in the state probabilities of each malaria risk factor as shown in Table 2. Changes in state
beliefs were used to calculate percentage point differences for each malaria risk factor to express their
contribution to malaria infections among children under �ve years (Table 2). A positive percentage point
difference meant that children in refugee settlements were more likely to test positive for malaria. A
negative percentage point difference meant that children in refugee settlements were less likely to test
positive for malaria.
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Table 2
Predicted changes in beliefs of states when a positive state �nding in the malaria rapid test results node

was made 100%.
Nodes and states Ranking Initial state-

beliefsa
New state-
beliefsb

Changes in
beliefsc

% point
change

Malaria test results          

Negative   0.51917      

Positive   0.48083 100%    

Age of refugee child 1        

Below 12 months   0.22222 0.21116 -0.01106 -1.11

13–24 months   0.18148 0.18231 0.00083 0.08*

25–36 months   0.16428 0.17481 0.00947 0.95*

37–48 months   0.23148 0.23406 0.00258 0.26*

49– 60 months   0.20000 0.20818 0.00818 0.82*

Main roof material 2        

Iron sheets   0.26922 0.26216 -0.00706 -0.71

Tarpaulin   0.20585 0.19953 -0.00632 -0.63

Thatch/palm leaf   0.52493 0.53831 0.01338 1.34*

Main wall material 3        

Bricks with cement   0.05297 0.05081 -0.00216 -0.22

Bricks with mud   0.54186 0.52887 -0.01299 -1.30

Cardboard walls   0.01547 0.01610 0.00063 0.06*

Plastered walls   0.00776 0.008043 0.00028 0.03*

Poles with mud   0.36904 0.37866 0.00962 0.96*

Thatch walls   0.01494 0.01552 0.00058 0.06*

Type of toilet facility 4        

No toilet facility   0.03094 0.03216 0.00122 0.12*

Open pit latrine   0.39848 0.39005 -0.00843 -0.84

Pit latrine with slab   0.48398 0.48743 0.00345 0.34*

a Represents the initial state belief probabilities for each malaria risk factor in the BBN model
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Nodes and states Ranking Initial state-
beliefsa

New state-
beliefsb

Changes in
beliefsc

% point
change

Malaria test results          

Ventilated Improved

Pit latrine (VIP)

  0.08659 0.09035 0.00376 0.38*

Type of cooking fuel 5        

Charcoal   0.19317 0.19992 0.00675 0.67*

Fire wood   0.80683 0.80008 -0.00675 -0.68

Time to get to water
source

6        

0 minutes   0.17186 0.17270 0.00084 0.08*

1–10 minutes   0.07289 0.07367 0.00078 0.08*

11–20 minutes   0.27082 0.27059 -0.00023 -0.02

21–30 minutes   0.09674 0.09233 -0.00441 -0.44

Above 30 minutes   0.39133 0.38708 -0.00425 -0.43

Whether children sleep
under ITNs

7        

All children   0.56862 0.56157 -0.00705 -0.71

No   0.23421 0.23547 0.00126 0.13*

Some children   0.19716 0.20296 0.00580 0.58*

Source of drinking water 8        

Boreholes   0.42631 0.42332 -0.00299 -0.30

Open water sources   0.04747 0.04865 0.00118 0.12*

Piped water on

premise

  0.01337 0.01375 0.00038 0.04*

Public taps   0.42694 0.42462 -0.00232 -0.23

Tanker trucks   0.08966 0.08592 -0.00374 -0.37

Main �oor material 9        

Cement �oor   0.08291 0.08584 0.00293 0.29*

a Represents the initial state belief probabilities for each malaria risk factor in the BBN model
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Nodes and states Ranking Initial state-
beliefsa

New state-
beliefsb

Changes in
beliefsc

% point
change

Malaria test results          

Dung �oor   0.18038 0.18376 0.00338 0.34*

Earth �oor   0.73671 0.73040 -0.00631 -0.63

Household wealth status 10        

Poor   0.78005 0.78593 0.00588 0.59*

Rich   0.21995 0.21407 -0.00588 -0.59

a Represents the initial state belief probabilities for each malaria risk factor in the BBN model

b Re�ects new state belief probabilities for the malaria risk factors when a positive state belief �nding in
the output node of the BBN model was made 100%.

c Indicates the predicted relative changes in probabilities from the initial to new state-beliefs.

* Represents the actual malaria risk factors, and their positive contribution to malaria infections.

From Table 2, refugee households with children aged between 13–24 months, 25–36 months, 37–48
months and 49–60 months, had the probabilities of their children testing positive for malaria increasing
by 0.08 percentage points (from 18.15–18.23%), 0.95 percentage points (from 16.43–17.48%), 0.26
percentage points (from 23.15–23.41%), and 0.82 percentage points (from 20–20.82%) respectively. This
�nding is consistent with a recent study on malaria risk factors in refugee settlements in Uganda, where it
was revealed that children aged between 13 months to 60 months, were more vulnerable to malaria
infections compared to children below 12 months [14]. Although our study results indicate that refugee
children below 12 months were not vulnerable to malaria, other studies have shown that this age group is
equally at a higher risk of malaria infections and should be given extra attention and care [36–39].

In Table 2, refugee households with thatch roof tops had the probability of children testing positive for
malaria increasing by 1.34 percentage points (from 52.49–53.83%). Roof thatch roof tops are known to
be hiding, and resting places for mosquitoes during day time. This �nding is consistent with a study
conducted on the malaria risk factors in SSA, which revealed that households with thatch roofs had the
probability of children testing positive for malaria parasitemia increasing by 8.61 percentage points [21].
Refugee households with wall constructed with cardboards, plaster, poles and thatch had the
probabilities of their children testing positive for malaria increasing by 0.06 percentage points (from
1.55–1.61%), 0.03 percentage points (from 0.78–0.80%), 0.96 percentage points (from 36.9% to 37/87%),
and 0.06 percentage points (from 1.49–1.55%) respectively. Households with cement and dung �oors,
had the probabilities of children testing positive for malaria increasing by 0.29 percentage points (from
8.29–8.58%) and 0.34 percentage points (from 18.04–18.38%) respectively. This �nding is consistent
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with other studies which have revealed that certain house designs, and building materials used for house
construction may increase the malaria risk by enhancing the risk of mosquito entry, density, and survival,
indoor mosquito resting, and mosquito bites[40–43].

Refugee households that did not have any toilet facility, had pit latrines with slabs and had VIP latrines,
had the probabilities of their children testing positive for malaria increasing by 0.12 percentage points
(from 3.09–3.22%), 0.34 percentage points (from 48.40–48.74%), 0.38 percentage points (from 8.66 to
9.04) (Table 2) respectively. The high malaria risk associated with pit latrines with slabs and VIP latrines
is not surprising, since these toilet facilities tend to create conducive resting places and breeding grounds
for mosquitoes [44].

From Table 2, refugee households who spent 0 minute and between 1–10 minutes walking to the water
sources, had the probability of their children testing positive for malaria increasing by 0.08 percentage
points (from 17.19–17.27%), and 0.08 percentage points (from 7.29–7.37%), respectively. Households
whose main sources of drinking water were open water sources, and piped water on premises, had the
probabilities of their children testing positive for malaria increasing by 0.12 percentage points (from
4.75–4.87%), and 0.04 percentage points (from 1.34–1.38%) respectively. Open water sources near
households and piped water systems, which are poorly managed have been associated with creating
potential breeding sites that shortened the gonotrophic cycles while increasing malaria transmission [14,
44]. However, as walk time distance to water sources increases, malaria infections tend to reduce due to
prolonged gonotrophic cycles attributed to limited long-range �ight abilities of mosquitoes [45]. Refugee
households whose children did not sleep under ITNs or had some children sleeping under ITNs, had the
probabilities of their children testing positive for malaria increasing by 0.13 percentage points (from
23.42–23.55%) and 0.58 percentage points (19.72–20.30%) respectively (Table 2).

Discussion
Despite extensive research on malaria, the disease remains a major health challenge in many countries of
SSA attributed to various socio-economic, and environmental factors. The household level risk factors of
malaria infections are known to be complex, stochastic, nonlinear, multidimensional, and do not act in
isolation [21]. In refugee settlements, these determinants are also linked to a range of closely related
factors including poverty, low levels of education, low access to basic social services, inadequacy of
some public policies, racism, sexism, and economic deprivation [9, 46]. Thus, integrated models [17] that
consider all these factors are urgently required to enable decision makers, and stakeholders to draw
appropriate conclusions in malaria control interventions in refugee settlements. The recent attempt to
model household level determinants of malaria infections in refugee settlements in Uganda [14] was
based on a logistic regression model which is not able to fully capture dependencies, uncertainties,
complex interactions and ranking of the various malaria risk factors to inform and direct policy
interventions on malaria control [11]. The same logistics regression models have been widely used to
determine the signi�cant malaria risk factors in many countries of SSA [6, 11, 47].
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Here for the �rst time, we have presented a knowledge-based BBN modelling approach as a potential
method to clarify the holistic understanding of the complex interactions among the risk factors of
malaria infections among children under �ve years in refugee settlements in Uganda, and quantify the
impact of various malaria risk factors. Although a BBN modelling technique has been used to model
household factors in�uencing the risk of malaria among children under �ve years in SSA [21], this is the
�rst study to use a BBN approach focusing on refugee settlements, which are unique given the fact that
there are inhabited by structurally disadvantaged populations [46]. Moreover, these structurally
disadvantaged populations characterized by racism, sexism, and economic deprivation [46] can lead to
further geographical distribution of parasites (i.e. introducing new parasite strains in new locations),
cause re-emergence or re-infections as well as lead to multiple, and co-infections with various strains
malaria parasites [14].

Basing on the BBN classi�cation categories (i.e. alpha, beta and gamma) proposed by Marcot and
colleagues [29], our developed BBN model can be considered as a gamma-level model or �nal application
model containing well tested, calibrated, validated, and updated state beliefs with reliable, and accurate
probabilistic results which can further be used to inform policy in malaria control programs in refugee
settlements of Uganda. The graphical representation of our model with summarized results in a visually
attractive and easy-to-analyse format can be used as part of decision analysis tool in malaria
interventions in refugee settlements. The explicit recognition of uncertainty by our developed BBN model
can help decision-makers to identify the risks associated with different malaria intervention strategies.

In this study, the risk factors of malaria infections among children under �ve years in refugee settlements
in Uganda were ranked in their order of importance (Fig. 5). This is a major advantage of a BBN-modeling
structure over traditional statistical models [18, 28]. In Table 2, the predications and estimates provided
indicate speci�c areas which need interventions. The top ranked 10 determinants (i.e., age of child, main
roof, wall and �oor materials, whether children sleep under ITNs, type of toilet facility used, walk time
distance to water sources, type of cooking fuel used, drinking water sources and household wealth) had a
higher probability of contributing to malaria burden in refugee settlements. Although lack of ITNs, and
IRS, age of household head, sex of household head, mother’s level of education, lack of knowledge on the
causes and prevention of malaria have been associated with malaria infections among children under
�ve years in SSA as shown in the recent review study [1], in this study, there are not among the 10 ranked
determinants in refugee settlements of Uganda. This is because refugee settlements are occupied by
structurally disadvantaged populations [46] coming from diverse social-cultural and economic
backgrounds which in turn may have varying impact on malaria infections among children.

The top 10 ranked determinants (Fig. 5) are crucial in enhancing the mosquito survival, biting and
feeding, parasite development, and breeding [1, 44]. The vulnerability of refugee children to malaria
infections is dependent on parents’ personal behaviors, gender roles, physical and environmental factors,
social-cultural aspects, and access rights [9]. Ranking and prioritising risk factors of malaria infections in
refugee settlements rather than providing their statistical signi�cance is an important component
because, it helps to allocate resources to malaria control interventions within the constraint of limited
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humanitarian funding [48]. Moreover, ranking and prioritization of malaria risk factors is crucial to provide
targeted interventions, since the health services in malaria-endemic countries have had to re-allocate
funding and resources towards COVID-19 containment efforts [4].

Strength and limitations of the study
The study’s main strength is its utilization of a new novel BBN modelling approach that exploited the
nationally representative data to generate new evidence, and ranking of the risk factors of malaria
infections among children in refugee settlements in Uganda. Thus, our model results can be used for
targeted malaria control interventions. Despite this strength, this study had some limitations. Although we
recognize the in�uence of climate change, environmental factors, land use, and land cover changes on
malaria transmission dynamics [8, 22], we were not able to incorporate these factors, because our BBN
model was compiled with case�les generated using non-spatial data extracted from the 2018–2019
UMIS.

Conclusion
Targeted interventions, and resource allocation are essential for effective malaria control in refugee
settlements in Uganda, with predictive integrated models providing important information for decision
making. In this study, we have shown how a BBN model can be used for accurate malaria prediction, and
ranking of malaria risk factors. The developed BBN model has an accuracy rate of 91.11% of predicting
48.1% positive, and 51.9% negative malaria cases correctly among children under �ve years in refugee
settlements of Uganda. Unlike in the previous studies that focused on the statistical signi�cance of
malaria risk factors, the sensitivity analysis results in our study identi�ed, and ranked the malaria risk
factors which is an excellent approach to inform policy recommendations on strategic malaria control
interventions. The top ranked risk factors of malaria infections included: (1) age of child, (2) roof
materials (i.e. thatch roofs), (3) wall materials (i.e., cardboard walls, plastered walls, poles with mud, and
thatch wall), (4) whether children slept under ITNs, (5) type of toilet facility used (i.e., no toilet facility, pit
latrines with slabs, and VIPs), (6) walk time distance to water sources (i.e., between 0–10 minute), (7)
type of cooking fuel used (i.e., charcoal), (8) drinking water sources (i.e., open water sources, and piped
water on premises), and (9) household wealth status (i.e., poor). These results can aid in the identi�cation
of priority measures to reduce mosquito density, survival, breeding, mosquito biting rates and human
vector contact in refugee settlements. Future studies can focus on the development of a GIS-BBN model
that can take into account the Global Positioning System datasets of the 2018–2019 UMIS, and other
spatio-temporal environmental, and climate data to disclose interesting features of the malaria
transmission hotspots. Risk mapping will captivate the spatial-regional malaria dimension of risk factors
in refugee settlements of Uganda within a context of climate change.
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Figures

Figure 1

Refugee hosting districts in Uganda
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Figure 2

In�uence diagram depicting a qualitative causal-effect relationship among the risk factors for malaria
infections among children under �ve years in refugee settlements of Uganda

Figure 3

A BBN for modeling the risk factors for malaria infections among children under the age �ve years in the
refugee settlements in Uganda
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Figure 4

A receiver-operating characteristic curve showing the classi�cation performance of the BBN model.
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Figure 5

Important ranking of the risk factors of malaria infections in refugee settlements in Uganda
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