Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Trophic rewilding can expand natural climate solutions

Abstract

Natural climate solutions are being advanced to arrest climate warming by protecting and enhancing carbon capture and storage in plants, soils and sediments in ecosystems. These solutions are viewed as having the ancillary benefit of protecting habitats and landscapes to conserve animal species diversity. However, this reasoning undervalues the role animals play in controlling the carbon cycle. We present scientific evidence showing that protecting and restoring wild animals and their functional roles can enhance natural carbon capture and storage. We call for new thinking that includes the restoration and conservation of wild animals and their ecosystem roles as a key component of natural climate solutions that can enhance the ability to prevent climate warming beyond 1.5 °C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of candidate animal species and ecosystems for which there is a high potential to expand natural climate solutions through trophic rewilding.

Similar content being viewed by others

Data availability

All the data used in this study are included in this Perspective (and its Supplementary Information).

References

  1. Hallegatte, S. & Mach, K. J. Make climate-change assessments more relevant. Nature 534, 613–615 (2016).

    Article  CAS  Google Scholar 

  2. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    Article  CAS  Google Scholar 

  3. Teske, S. Achieving the Paris Climate Agreement Goals: Global and Regional Renewable Energy Scenarios with Non-Energy GHG Pathways for +1.5°C and +2°C (Springer Open, 2019).

  4. Fuss, S. et al. Moving toward net-zero emissions requires new alliances for carbon dioxide removal. One Earth 3, 145–149 (2020).

    Article  Google Scholar 

  5. Fargione, J. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Article  Google Scholar 

  6. Griscom, B. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article  CAS  Google Scholar 

  7. Hoegh-Guldberg, O. et al. The Ocean as a Solution to Climate Change: Five Opportunities for Action (World Resources Institute, 2019).

  8. Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).

    Article  Google Scholar 

  9. Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Article  Google Scholar 

  10. Girardin, A. J. et al. Nature-based solutions can help cool the planet—if we act now. Nature 593, 191–194 (2021).

    Article  CAS  Google Scholar 

  11. Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B 375, 20190120 (2020).

    Article  Google Scholar 

  12. Miles, L. et al. Nature-Based Solutions for Climate Change Mitigation (United Nations Environment Program and International Union for Conservation of Nature, 2021).

  13. Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).

    Article  Google Scholar 

  14. Sarira, T. V. et al. Co-benefits of forest carbon projects in Southeast Asia. Nat. Sustain. 5, 393–396 (2022).

    Article  Google Scholar 

  15. Mori, A. S. Advancing nature-based approaches to address the biodiversity and climate emergency. Ecol. Lett. 23, 1729–1732 (2020).

    Article  Google Scholar 

  16. Jackson, R. N. et al. The ecology of soil carbon: pools, vulnerabilities and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).

    Article  Google Scholar 

  17. Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243 (2018).

    Article  Google Scholar 

  18. Brodie, J. F. & Gibbs, H. K. Bushmeat hunting as climate threat. Science 326, 364–365 (2005).

    Article  Google Scholar 

  19. Schmitz, O. J. et al. Animating the carbon cycle. Ecosystems 7, 344–359 (2014).

    Article  Google Scholar 

  20. Smith, F. A., Lyons, S. K., Wagner, P. J. & Elliott, S. M. The importance of considering animal body mass in IPCC greenhouse inventories and the underappreciated role of wild herbivores. Glob. Change Biol. 21, 3880–3888 (2015).

    Article  Google Scholar 

  21. Mahli, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).

    Article  Google Scholar 

  22. Cromsigt, J. P. et al. Trophic rewilding as a climate change mitigation strategy? Phil. Trans. R. Soc. B 373, 20170440 (2018).

    Article  Google Scholar 

  23. Schmitz, O. J. et al. Animals and the zoogeochemistry of the carbon cycle. Science 362, eaar3213 (2018).

    Article  Google Scholar 

  24. Sandom, C. J. et al. Trophic rewilding presents regionally specific opportunities for mitigating climate change. Phil. Trans. R. Soc. B 375, 20190125 (2020).

    Article  CAS  Google Scholar 

  25. Schmitz, O. J. & Leroux, S. J. Food webs and ecosystems: linking species interactions to the carbon cycle. Annu. Rev. Ecol. Evol. Syst. 51, 272–295 (2020).

    Article  Google Scholar 

  26. Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).

    Article  Google Scholar 

  27. Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).

    Article  CAS  Google Scholar 

  28. Culot, L. et al. Synergistic effects of seed disperser and predator loss on recruitment success and long-term consequences for carbon stocks in tropical rainforests. Sci. Rep. 7, 7662 (2017).

    Article  Google Scholar 

  29. Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).

    Article  Google Scholar 

  30. Pörtner, H. O. et al. IPBES–IPCC co-sponsored workshop report on biodiversity and climate change. Zenodo https://doi.org/10.5281/zenodo.4782538 (2021).

  31. Nelson, E. et al. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. Proc. Natl Acad. Sci. USA 105, 9471–9476 (2008).

    Article  CAS  Google Scholar 

  32. Strassbourg, B. B. N. et al. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett. 3, 98–105 (2010).

    Article  Google Scholar 

  33. Thomas, C. D. et al. Reconciling biodiversity and carbon conservation. Ecol. Lett. 16, 39–47 (2013).

    Article  Google Scholar 

  34. Seddon, N. et al. Grounding nature-based solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).

    Article  Google Scholar 

  35. Schmitz, O. J., Post, E., Burns, C. E. & Johnston, K. M. Ecosystem responses to global climate change: moving beyond color-mapping. BioScience 53, 1199–1205 (2003).

    Article  Google Scholar 

  36. Soulé‚ M. E., Estes, J. A., Berger, J. & Martinez del Rio, C. Ecological effectiveness: conservation goals for interactive species. Conserv. Biol. 17, 1238–1250 (2003).

    Article  Google Scholar 

  37. Jarvie, S. & Svenning, J.-C. Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change. Phil. Trans. R. Soc. B 373, 20170446 (2018).

    Article  Google Scholar 

  38. Svenning, J.-C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).

    Article  CAS  Google Scholar 

  39. Bakker, E. S. & Svenning, J.-C. Trophic rewilding: impact on ecosystems under global change. Phil. Trans. R. Soc. B 373, 20170432 (2018).

    Article  Google Scholar 

  40. Smith, F. A. et al. Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget. Proc. Natl Acad. Sci. USA 113, 874–879 (2016).

    Article  CAS  Google Scholar 

  41. Enquist, B. et al. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).

    Article  CAS  Google Scholar 

  42. Hyvarinen, O. et al. Megaherbivore impacts on ecosystem and Earth system functioning: the current state of the science. Ecography 44, 1579–1594 (2021).

    Article  Google Scholar 

  43. Løvschal, M. et al. Fencing bodes a rapid collapse of the unique Greater Mara ecosystem. Sci. Rep. 7, 41450 (2017).

    Article  Google Scholar 

  44. Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti–Mara ecosystem. Science 363, 1424–1428 (2019).

    Article  CAS  Google Scholar 

  45. Donlan, C. J. et al. Pleistocene rewilding: an optimistic agenda for twenty-first century conservation. Am. Nat. 168, 660–681 (2006).

    Article  Google Scholar 

  46. Vynne, C. et al. An ecoregion-based approach to restoring the world’s intact mammal assemblages. Ecography 2022, e06098 (2022).

    Article  Google Scholar 

  47. Holdo, R. M. et al. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol. 7, e1000210 (2009).

    Article  Google Scholar 

  48. Karp, A. T., Faith, J. T., Marlon, J. R. & Staver, A. C. Global response of fire activity to late Quaternary grazer extinctions. Science 374, 1145–1148 (2021).

    Article  CAS  Google Scholar 

  49. Johnson, C. N. et al. Can trophic rewilding reduce the impact of fire in a more flammable world? Phil. Trans. R. Soc. B 373, 20170443 (2018).

    Article  Google Scholar 

  50. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  Google Scholar 

  51. Nauer, P. A., Hutley, L. B. & Arndt, S. K. Termite mounds mitigate half of termite methane emissions. Proc. Natl Acad. Sci. USA 115, 13306–13311 (2018).

    Article  CAS  Google Scholar 

  52. Bianchi, D. et al. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. Sci. Adv. 17, eabd7554 (2021).

    Article  Google Scholar 

  53. Chapin, F. S. III et al. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9, 1041–1050 (2006).

    Article  CAS  Google Scholar 

  54. Wilmers, C. C. et al. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10, 409–415 (2012).

    Article  Google Scholar 

  55. Wilmers, C. C. & Schmitz, O. J. Effects of gray wolf‐induced trophic cascades on ecosystem carbon cycling. Ecosphere 7, e01501 (2016).

    Article  Google Scholar 

  56. Atwood, T. B. et al. Predators shape sedimentary organic carbon storage in a coral reef ecosystem. Front. Ecol. Evol. 6, 110 (2018).

    Article  Google Scholar 

  57. Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1639–1644 (2021).

    Article  CAS  Google Scholar 

  58. Berzaghi, F. et al. Financing conservation by valuing carbon services produced by wild animals. Proc. Natl Acad. Sci. USA 119, e2120426119 (2022).

    Article  CAS  Google Scholar 

  59. Sanderson, E. W. et al. The ecological future of North American bison: conceiving long-term, large-scale conservation of wildlife. Conserv. Biol. 22, 252–266 (2008).

    Article  Google Scholar 

  60. Lavery, T. J. et al. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc. R. Soc. B. 277, 3527–3531 (2010).

    Article  Google Scholar 

  61. Dufort, A. et al. Recovery of carbon benefits by overharvested baleen whale populations is threatened by climate change. Proc. R. Soc. B. 289, 20220375 (2022).

    Article  Google Scholar 

  62. Nummi, P., Vehkaoja, M., Pumpanen, J. & Ojala, A. Beavers affect carbon biogeochemistry: both short-term and long-term processes are involved. Mamm. Rev. 48, 298–311 (2018).

    Article  Google Scholar 

  63. Wohl, E. Legacy effects of loss of beavers in the continental United States. Environ. Res. Lett. 16, 025010 (2021).

    Article  Google Scholar 

  64. Strauss, J. et al. Circum-Arctic map of the Yedoma permafrost domain. Front. Earth Sci. 9, 758360 (2021).

    Article  Google Scholar 

  65. Macias-Fauria, M. et al. Pleistocene Arctic megafaunal ecological engineering as a natural climate solution? Phil. Trans. R. Soc. B 375, 20190122 (2020).

    Article  CAS  Google Scholar 

  66. Beer, C. et al. Protection of permafrost soils from thawing by increasing herbivore density. Sci. Rep. 10, 4170 (2020).

    Article  CAS  Google Scholar 

  67. Olofsson, J. & Post, E. Effects of large herbivores on tundra vegetation in a changing climate, and implications for rewilding. Phil. Trans. R. Soc. B 373, 20170437 (2018).

    Article  Google Scholar 

  68. Lara, M. J. et al. Peak season carbon exchange shifts from a sink to a source following 50+ years of herbivore exclusion in an Arctic tundra ecosystem. J. Ecol. 105, 122–131 (2017).

    Article  CAS  Google Scholar 

  69. Tacutu, R. et al. Human ageing genomic resources: new and updated databases. Nucleic Acids Res. 46, D1083–D1090 (2018).

    Article  CAS  Google Scholar 

  70. Coverdale, T. C. et al. Indirect human impacts reverse centuries of carbon sequestration and saltmarsh accretion. PLoS ONE 9, 393296 (2014).

    Article  Google Scholar 

  71. Brodie, J. How monkeys sequester carbon. Trends Ecol. Evol. 31, 414 (2016).

    Article  Google Scholar 

  72. Kristensen, J. A., Svenning, J.-C., Georgiou, K. & Mahli, Y. Can large herbivores stabilize ecosystem carbon? Trends Ecol. Evol. 37, 117–128 (2022).

    Article  CAS  Google Scholar 

  73. Pellegrini, A. F. A., Pringle, R. M., Govender, N. & Hedin, L. O. Woody plant biomass and carbon exchange depend on elephant–fire interactions across a productivity gradient in African savanna. J. Ecol. 105, 111–121 (2017).

    Article  CAS  Google Scholar 

  74. Davies, A. B. & Asner, G. P. Elephants limit aboveground carbon gains in African savannas. Glob. Change Biol. 25, 1368–1382 (2019).

    Article  Google Scholar 

  75. Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nat. Geosci. 12, 725–729 (2017).

    Article  Google Scholar 

  76. Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).

    Article  CAS  Google Scholar 

  77. Mahli, Y. et al. The role of large wild animals in climate change mitigation and adaptation. Curr. Biol. 32, R181–R196 (2022).

    Article  Google Scholar 

  78. Berzaghi, F. et al. Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles—the potential of vegetation models. Ecography 41, 1934–1954 (2018).

    Article  Google Scholar 

  79. Ylänne, H., Olofsson, J., Oksanen, L. & Stark, S. Consequences of grazer-induced vegetation transitions on ecosystem carbon storage in the tundra. Funct. Ecol. 32, 1091–1102 (2017).

    Article  Google Scholar 

  80. Hedberg, C. P., Lyons, S. K. & Smith, F. A. The hidden legacy of megafaunal extinction: loss of functional diversity and resilience over the late Quaternary at Hall’s Cave. Glob. Ecol. 31, 294–307 (2022).

    Article  Google Scholar 

  81. Leroux, S. J., Hawlena, D. & Schmitz, O. J. Predation risk, stoichiometric plasticity and ecosystem elemental cycling. Proc. R. Soc. Lond. B 279, 4183–4191 (2012).

    Google Scholar 

  82. Ren, L. et al. Biota-mediated carbon cycling—a synthesis of biotic interaction controls on blue carbon. Ecol. Lett. 25, 521–540 (2021).

    Article  Google Scholar 

  83. Leroux, S. J. & Schmitz, O. J. Predator-driven elemental cycling: the predation and risk effects on ecosystem elemental cycling. Ecol. Evol. 5, 4976–4988 (2016).

    Article  Google Scholar 

  84. Schmitz, O. J. et al. Predator community composition is linked to soil carbon retention across a human land use gradient. Ecology 98, 1256–1265 (2017).

    Article  Google Scholar 

  85. Clauss, M. et al. Review: comparative methane production in mammalian herbivores. Animal 14, s113–s123 (2020).

    Article  CAS  Google Scholar 

  86. Sitters, J. et al. Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores. Nat. Sustain. 3, 360–366 (2020).

    Article  Google Scholar 

  87. Temmink, R. J. M. et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 376, eabn1479 (2022).

    Article  CAS  Google Scholar 

  88. Sayre, R. G. et al. An assessment of the representation of ecosystems in global protected areas using new maps of world climate regions and world ecosystems. Glob. Ecol. Conserv. 21, e00860 (2020).

    Article  Google Scholar 

  89. Sayre, R. G. et al. A three-dimensional mapping of the ocean based on environmental data. Oceanography 30, 90–103 (2017).

    Article  Google Scholar 

  90. Sala, E. & Knowlton, N. Global marine biodiversity trends. Annu. Rev. Environ. Res. 31, 93–122 (2006).

    Article  Google Scholar 

  91. Dulal, H. B., Shah, K. U. & Sapkota, U. Reducing emissions from deforestation and forest degradation (REDD) projects: lessons for future policy design and implementation. Int. J. Sustain. Dev. World 19, 116–129 (2012).

    Google Scholar 

  92. Venter, O. & Koh, L.-P. Reducing emissions from deforestation and forest degradation (REDD+): game changer or just another quick fix? Ann. NY Acad. Sci. 1249, 137–150 (2012).

    Article  Google Scholar 

  93. Plumptre, A. J. et al. Where might we find ecologically intact communities. Front. Glob. Change 4, 626635 (2021).

    Article  Google Scholar 

  94. Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    Article  CAS  Google Scholar 

  95. Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    Article  CAS  Google Scholar 

  96. Ledger, S. E. H. et al. Wildlife Comeback in Europe: Opportunities and Challenges for Species Recovery (Rewilding Europe, 2022).

  97. Natura 2000. European Commission https://ec.europa.eu/environment/nature/natura2000/index_en.htm (2008).

  98. Andronic, C. et al. The Challenge of Land Abandonment after 2020 and Options for Mitigating Measures (Federal Institute of Agricultural Economics, Rural and Mountain Research, 2021).

  99. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    Article  CAS  Google Scholar 

  100. Fløjgaard, C. et al. Exploring a natural baseline for large-herbivore biomass in ecological restoration. J. Appl. Ecol. 59, 18–24 (2022).

    Article  Google Scholar 

  101. Takacs, D. Whose voices count in biodiversity conservation? Ecological democracy in biodiversity offsetting, REDD+, and rewilding. J. Environ. Policy Plan. 22, 43–58 (2020).

    Article  Google Scholar 

  102. Carter, N. H. & Linnell, J. D. C. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31, 575–587 (2016).

    Article  Google Scholar 

  103. von Hohenberg, B. C. & Hager, A. Wolf attacks predict far-right voting. Proc. Natl Acad. Sci. USA 119, e2202224119 (2022).

    Article  CAS  Google Scholar 

  104. Yona, L., Cashore, B. & Schmitz, O. J. Integrating policy and ecology systems to achieve path dependent climate solutions. Environ. Sci. Policy 98, 54–60 (2019).

    Article  Google Scholar 

  105. 2019 Climate Action Summit. United Nations https://www.un.org/en/climatechange/2019-climate-action-summit (2019).

  106. IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  107. UN Convention on Biological Diversity First Draft of the Post-2020 Global Biodiversity Framework (UN 2021); https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf

  108. Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).

    Article  CAS  Google Scholar 

  109. Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    Article  CAS  Google Scholar 

  110. Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    Article  CAS  Google Scholar 

  111. Tigchelaar, M. et al. The vital role of blue foods in the global food system. Glob. Food Sec. 33, 100637 (2022).

    Article  Google Scholar 

  112. A High Ambition Coalition on Biodiversity beyond National Jurisdiction, Protecting the Ocean: Time for Action (European Commission, 2022); https://oceans-and-fisheries.ec.europa.eu/ocean/international-ocean-governance/protecting-ocean-time-action_en

  113. White, C. & Costello, C. Close the high seas to fishing? PLoS Biol. 12, e1001826 (2014).

    Article  Google Scholar 

  114. Cook-Patton, S. C. et al. Protect, manage and then restore lands for climate mitigation. Nat. Clim. Change 11, 1027–1034 (2021).

    Article  Google Scholar 

  115. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  116. Krause, T. & Nielsen, M. R. Not seeing the forest for the trees: the oversight of defaunation in REDD+ and global forest governance. Forests 10, 344 (2019).

    Article  Google Scholar 

  117. Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun. 6, 6857 (2015).

    Article  CAS  Google Scholar 

  118. Berzaghi, F. et al. Value wild animals' carbon services to fill the biodiversity financing gap. Nat. Clim. Change 12, 598–601 (2022).

    Article  Google Scholar 

  119. Jung, M. Habitatmapping. GitHub https://github.com/Martin-Jung/Habitatmapping (2020).

Download references

Acknowledgements

This work was supported by funding from One Earth and Rewilding Europe to O.J.S. and M.S., from the EU H2020 Research and Innovation Program project MEESO (Ecologically and economically sustainable mesopelagic fisheries #817669) to F.B., and from the Danish National Research Foundation grant DNRF173 and VILLUM FONDEN grant 16549 to J.-C.S.

Author information

Authors and Affiliations

Authors

Contributions

O.J.S. and M.S. conceived the study. O.J.S. wrote the first draft and conducted the calculations presented in the Supplementary Information. All the authors provided technical and scholarly input and reviewed and revised drafts of the manuscript.

Corresponding author

Correspondence to Oswald J. Schmitz.

Ethics declarations

Competing interests

M.S., F.J.S. and A.T. are employed by environmental non-governmental organizations with interests in funding and implementing rewilding programmes for natural climate solutions. They provided technical expertise on applying trophic rewilding and carbon science to climate and conservation policy, and human–nature coexistence. The other authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Christopher Johnson, Gaël Mariani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Appendices 1 and 2, and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, O.J., Sylvén, M., Atwood, T.B. et al. Trophic rewilding can expand natural climate solutions. Nat. Clim. Chang. 13, 324–333 (2023). https://doi.org/10.1038/s41558-023-01631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01631-6

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology